Rujukan Transkripsi (biologi)

  1. "Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases". FEBS Letters. 252 (1–2): 42–6. July 1989. doi:10.1016/0014-5793(89)80886-5. PMID 2759231.
  2. 1 2 Eldra P. Solomon, Linda R. Berg, Diana W. Martin. Biology, 8th Edition, International Student Edition. Thomson Brooks/Cole. ISBN 978-0495317142
  3. 1 2 Clark, David P. (2005-06-24). Molecular Biology (dalam bahasa Inggeris). Elsevier. m/s. 134. ISBN 978-0-08-045421-4.
  4. "DNA Strands". www.sci.sdsu.edu. Diarkibkan daripada yang asal pada 27 October 2017. Dicapai pada 1 May 2018.
  5. Berg J, Tymoczko JL, Stryer L (2006). Biochemistry (ed. 6th). San Francisco: W. H. Freeman. ISBN 0-7167-8724-5.
  6. 1 2 3 4 5 6 7 Watson JD, Baker TA, Bell SP, Gann AA, Levine M, Losick RM (2013). Molecular Biology of the Gene (ed. 7th). Pearson.
  7. "Eukaryotic core promoters and the functional basis of transcription initiation". Nat Rev Mol Cell Biol. 19 (10): 621–637. October 2018. doi:10.1038/s41580-018-0028-8. PMC 6205604. PMID 29946135.
  8. "The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1". Front Cell Dev Biol. 8: 592164. 2020. doi:10.3389/fcell.2020.592164. PMC 7554316. PMID 33102493.
  9. "Transcription factors: from enhancer binding to developmental control". Nat Rev Genet. 13 (9): 613–26. September 2012. doi:10.1038/nrg3207. PMID 22868264.
  10. 1 2 "Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression". Nat Neurosci. 23 (6): 707–717. June 2020. doi:10.1038/s41593-020-0634-6. PMC 7558717. PMID 32451484.
  11. 1 2 "Long-range enhancer-promoter contacts in gene expression control". Nat Rev Genet. 20 (8): 437–455. August 2019. doi:10.1038/s41576-019-0128-0. PMID 31086298.
  12. "Enhancers: five essential questions". Nat Rev Genet. 14 (4): 288–95. April 2013. doi:10.1038/nrg3458. PMC 4445073. PMID 23503198.
  13. "YY1 Is a Structural Regulator of Enhancer-Promoter Loops". Cell. 171 (7): 1573–1588.e28. December 2017. doi:10.1016/j.cell.2017.11.008. PMC 5785279. PMID 29224777.
  14. "The Human Transcription Factors". Cell. 172 (4): 650–665. February 2018. doi:10.1016/j.cell.2018.01.029. PMID 29425488.
  15. 1 2 "Positional specificity of different transcription factor classes within enhancers". Proc Natl Acad Sci U S A. 115 (30): E7222–E7230. July 2018. Bibcode:2018PNAS..115E7222G. doi:10.1073/pnas.1804663115. PMC 6065035. PMID 29987030.
  16. "The Mediator complex: a central integrator of transcription". Nat Rev Mol Cell Biol. 16 (3): 155–66. March 2015. doi:10.1038/nrm3951. PMC 4963239. PMID 25693131.
  17. "The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription". Genes Dev. 32 (1): 42–57. January 2018. doi:10.1101/gad.308619.117. PMC 5828394. PMID 29378788.
  18. "MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300". EMBO J. 22 (2): 281–91. January 2003. doi:10.1093/emboj/cdg028. PMC 140103. PMID 12514134.
  19. "Enhancer RNAs predict enhancer-gene regulatory links and are critical for enhancer function in neuronal systems". Nucleic Acids Res. 48 (17): 9550–9570. September 2020. doi:10.1093/nar/gkaa671. PMC 7515708. PMID 32810208.
  20. "DNA methylation in human epigenomes depends on local topology of CpG sites". Nucleic Acids Res. 44 (11): 5123–32. June 2016. doi:10.1093/nar/gkw124. PMC 4914085. PMID 26932361.
  21. "Cytosine methylation and CpG, TpG (CpA) and TpA frequencies". Gene. 333: 143–9. May 2004. doi:10.1016/j.gene.2004.02.043. PMID 15177689.
  22. "Pervasive and CpG-dependent promoter-like characteristics of transcribed enhancers". Nucleic Acids Res. 48 (10): 5306–5317. June 2020. doi:10.1093/nar/gkaa223. PMC 7261191. PMID 32338759.
  23. "DNA methylation patterns and epigenetic memory". Genes Dev. 16 (1): 6–21. January 2002. doi:10.1101/gad.947102. PMID 11782440.
  24. 1 2 3 "Methyl-CpG-binding domain proteins: readers of the epigenome". Epigenomics. 7 (6): 1051–73. 2015. doi:10.2217/epi.15.39. PMID 25927341.
  25. "A census of human transcription factors: function, expression and evolution". Nat. Rev. Genet. 10 (4): 252–63. April 2009. doi:10.1038/nrg2538. PMID 19274049.
  26. 1 2 3 4 "EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity". Nat Commun. 10 (1): 3892. August 2019. Bibcode:2019NatCo..10.3892S. doi:10.1038/s41467-019-11905-3. PMC 6715719. PMID 31467272.
  27. 1 2 "Genome-wide investigation of in vivo EGR-1 binding sites in monocytic differentiation". Genome Biol. 10 (4): R41. 2009. doi:10.1186/gb-2009-10-4-r41. PMC 2688932. PMID 19374776.
  28. "Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?". Neuroscientist. 24 (2): 171–185. April 2018. doi:10.1177/1073858417707457. PMC 5846851. PMID 28513272.
  29. "Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities". Nat Neurosci. 15 (8): 1111–3. July 2012. doi:10.1038/nn.3151. PMID 22751036.
  30. "The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation". J Biol Chem. 285 (34): 26114–20. August 2010. doi:10.1074/jbc.M109.089433. PMC 2924014. PMID 20547484.
  31. "Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands". EMBO J. 36 (23): 3421–3434. December 2017. doi:10.15252/embj.201797038. PMC 5709737. PMID 29074627.
  32. "H3K36me2/3 Binding and DNA Binding of the DNA Methyltransferase DNMT3A PWWP Domain Both Contribute to its Chromatin Interaction". J Mol Biol. 431 (24): 5063–5074. December 2019. doi:10.1016/j.jmb.2019.09.006. PMID 31634469.
  33. "Synaptic control of DNA methylation involves activity-dependent degradation of DNMT3A1 in the nucleus". Neuropsychopharmacology. 45 (12): 2120–2130. November 2020. doi:10.1038/s41386-020-0780-2. PMC 7547096. PMID 32726795.
  34. 1 2 Pakay, Julian; Duivenvoorden, Hendrika; Shafee, Thomas; Clarke, Kaitlin (2023). Threshold Concepts in Biochemistry. La Trobe eBureau. doi:10.26826/1017. ISBN 978-0-6484681-9-6. S2CID 258899183 Check |s2cid= value (bantuan).
  35. Boutard, Magali (2016). "Global repositioning of transcription start sites in a plant-fermenting bacterium". Nature Communications. 7: 13783. Bibcode:2016NatCo...713783B. doi:10.1038/ncomms13783. PMC 5171806. PMID 27982035.
  36. Roeder, Robert G. (1991). "The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly". Trends in Biochemical Sciences. 16 (11): 402–408. doi:10.1016/0968-0004(91)90164-Q. ISSN 0968-0004. PMID 1776168.
  37. "Direct detection of abortive RNA transcripts in vivo". Science. 324 (5929): 927–8. May 2009. Bibcode:2009Sci...324..927G. doi:10.1126/science.1169237. PMC 2718712. PMID 19443781.
  38. "Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching". Science. 314 (5802): 1139–43. November 2006. Bibcode:2006Sci...314.1139R. doi:10.1126/science.1131398. PMC 2754787. PMID 17110577.
  39. "Holoenzyme switching and stochastic release of sigma factors from RNA polymerase in vivo". Molecular Cell. 20 (3): 357–66. November 2005. doi:10.1016/j.molcel.2005.10.011. PMID 16285918.
  40. "Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II". Proceedings of the National Academy of Sciences of the United States of America. 101 (20): 7572–7. May 2004. Bibcode:2004PNAS..101.7572M. doi:10.1073/pnas.0401493101. PMC 419647. PMID 15136722.
  41. "Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II". Cell. 77 (1): 145–56. April 1994. doi:10.1016/0092-8674(94)90242-9. PMID 8156590.
  42. Milo, Ron; Philips, Rob. "Cell Biology by the Numbers: What is faster, transcription or translation?". book.bionumbers.org. Diarkibkan daripada yang asal pada 20 April 2017. Dicapai pada 8 March 2017.
  43. "Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II". Science. 325 (5940): 626–8. July 2009. Bibcode:2009Sci...325..626H. doi:10.1126/science.1172926. PMC 2775800. PMID 19644123.
  44. 1 2 "Nucleosomal arrangement affects single-molecule transcription dynamics". Proceedings of the National Academy of Sciences. 113 (45): 12733–12738. 2016. Bibcode:2016PNAS..11312733F. doi:10.1073/pnas.1602764113. PMC 5111697. PMID 27791062.
  45. Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, Iacovoni JS, Daburon V, Miller KM, Jackson SP, Legube G. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol. 2014 Apr;21(4):366-74. doi: 10.1038/nsmb.2796. Epub 2014 Mar 23. PMID: 24658350; PMCID: PMC4300393
  46. Ouyang J, Yadav T, Zhang JM, Yang H, Rheinbay E, Guo H, Haber DA, Lan L, Zou L. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature. 2021 Jun;594(7862):283-288. doi: 10.1038/s41586-021-03538-8. Epub 2021 May 12. PMID: 33981036; PMCID: PMC8855348
  47. García-Rubio M, Huertas P, González-Barrera S, Aguilera A. Recombinogenic effects of DNA-damaging agents are synergistically increased by transcription in Saccharomyces cerevisiae. New insights into transcription-associated recombination. Genetics. 2003 Oct;165(2):457-66. doi: 10.1093/genetics/165.2.457. PMID: 14573461; PMCID: PMC1462770
  48. "Rho-dependent termination and ATPases in transcript termination". Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1577 (2): 251–260. September 2002. doi:10.1016/S0167-4781(02)00456-6. PMID 12213656.
  49. "Overlapping pathways dictate termination of RNA polymerase II transcription". Biochimie. 89 (10): 1177–82. October 2007. doi:10.1016/j.biochi.2007.05.007. PMID 17629387.
  50. Shi, J; Wen, A; Zhao, M; Jin, S; You, L; Shi, Y; Dong, S; Hua, X; Zhang, Y (18 November 2020). "Structural basis of Mfd-dependent transcription termination". Nucleic Acids Research. 48 (20): 11762–11772. doi:10.1093/nar/gkaa904. PMC 7672476. PMID 33068413.
  51. Jiang, Y; Liu, M; Spencer, CA; Price, DH (7 May 2004). "Involvement of transcription termination factor 2 in mitotic repression of transcription elongation". Molecular Cell. 14 (3): 375–85. doi:10.1016/s1097-2765(04)00234-5. PMID 15125840.
  52. Marshall, CJ; Qayyum, MZ; Walker, JE; Murakami, KS; Santangelo, TJ (9 August 2022). "The structure and activities of the archaeal transcription termination factor Eta detail vulnerabilities of the transcription elongation complex". Proceedings of the National Academy of Sciences of the United States of America. 119 (32): e2207581119. Bibcode:2022PNAS..11907581M. doi:10.1073/pnas.2207581119. PMC 9371683 Check |pmc= value (bantuan). PMID 35917344 Check |pmid= value (bantuan).
  53. Cramer, P.; Armache, K.-J.; Baumli, S.; Benkert, S.; Brueckner, F.; Buchen, C.; Damsma, G.E.; Dengl, S.; Geiger, S.R. (June 2008). "Structure of Eukaryotic RNA Polymerases". Annual Review of Biophysics. 37 (1): 337–352. doi:10.1146/annurev.biophys.37.032807.130008. ISSN 1936-122X. PMID 18573085.
  54. http://www.sigmaaldrich.com/US/en/product/sial/h68788-Hydroxyquinoline from SIGMA-ALDRICH. Retrieved 2022-02-15
  55. "A Glucose-Triptolide Conjugate Selectively Targets Cancer Cells under Hypoxia". iScience. 23 (9): 101536. 2020. Bibcode:2020iSci...23j1536D. doi:10.1016/j.isci.2020.101536. PMC 7509213. PMID 33083765.
  56. "A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters". Proceedings of the National Academy of Sciences of the United States of America. 103 (5): 1412–7. January 2006. Bibcode:2006PNAS..103.1412S. doi:10.1073/pnas.0510310103. PMC 1345710. PMID 16432200.
  57. "DNA methylation patterns and epigenetic memory". Genes & Development. 16 (1): 6–21. January 2002. doi:10.1101/gad.947102. PMID 11782440.
  58. "Cancer genome landscapes". Science. 339 (6127): 1546–58. March 2013. Bibcode:2013Sci...339.1546V. doi:10.1126/science.1235122. PMC 3749880. PMID 23539594.
  59. "MicroRNAs in the DNA Damage/Repair Network and Cancer". International Journal of Genomics. 2014: 820248. 2014. doi:10.1155/2014/820248. PMC 3926391. PMID 24616890.
  60. "TNFα signals through specialized factories where responsive coding and miRNA genes are transcribed". The EMBO Journal. 31 (23): 4404–14. November 2012. CiteSeerX 10.1.1.919.1919. doi:10.1038/emboj.2012.288. PMC 3512387. PMID 23103767.
  61. "Chemistry 2006". Nobel Foundation. Diarkibkan daripada yang asal pada March 15, 2007. Dicapai pada March 29, 2007.
  62. "Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ". Nature Methods. 17 (5): 515–523. April 2020. doi:10.1038/s41592-020-0797-9. PMC 7205578. PMID 32251394.
  63. "Nature, nurture, or chance: stochastic gene expression and its consequences". Cell. 135 (2): 216–26. October 2008. doi:10.1016/j.cell.2008.09.050. PMC 3118044. PMID 18957198.
  64. Clark, David P. (2005-06-24). Molecular Biology (dalam bahasa Inggeris). Elsevier. m/s. 63. ISBN 978-0-08-045421-4.
  65. "Alternative lengthening of telomeres: models, mechanisms and implications". Nature Reviews Genetics. 11 (5): 319–30. May 2010. doi:10.1038/nrg2763. PMID 20351727.
Pengawalaturan transkripsi
prokariot
eukariot
Enzim pengubah suai histon
(histon/nukleosom):
Pemetilan DNA:
Pemodelan semula kromatin:
kedua-dua
Promosi
Pemulaan
Pemanjangan
Penamatan
(bakteria,
eukariot)